Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biochimie ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723940

RESUMO

Glycogen synthase kinase-3 (GSK-3) plays important roles in the pathogenesis of cardiovascular, metabolic, neurological disorders and cancer. Isoform-specific loss of either GSK-3α or GSK-3ß often provides cytoprotective effects under such clinical conditions. However, available synthetic small molecule inhibitors are relatively non-specific, and their chronic use may lead to adverse effects. Therefore, screening for natural compound inhibitors to identify the isoform-specific inhibitors may provide improved clinical utility. Here, we screened 70 natural compounds to identify novel natural GSK-3 inhibitors employing comprehensive in silico and biochemical approaches. Molecular docking and pharmacokinetics analysis identified two natural compounds Psoralidin and Rosmarinic acid as potential GSK-3 inhibitors. Specifically, Psoralidin and Rosmarinic acid exhibited the highest binding affinities for GSK-3α and GSK-3ß, respectively. Consistent with in silico findings, the kinase assay-driven IC50 revealed superior inhibitory effects of Psoralidin against GSK-3α (IC50=2.26 µM) vs. GSK-3ß (IC50=4.23 µM) while Rosmarinic acid was found to be more potent against GSK-3ß (IC50=2.24 µM) than GSK-3α (IC50=5.14 µM). Taken together, these studies show that the identified natural compounds may serve as GSK-3 inhibitors with Psoralidin serving as a better inhibitor for GSK-3α and Rosmarinic for GSK-3ß isoform, respectively. Further characterization employing in vitro and preclinical models will be required to test the utility of these compounds as GSK-3 inhibitors for cardiometabolic and neurological disorders and cancers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38644720

RESUMO

Nanoparticles bestow beneficial impacts on plants, specifically in increasing photosynthetic capacity and germination rate, pesticide delivery, managing pathogenicity and enhancing nutrient supply. The nanoparticles produced from the medicinal plant extracts are identified as an exceptional applicant in nanomedicine, cosmetics, and agriculture for the treatment of diseases as antimicrobial, antioxidant and anticancer agents, etc. Plant extracts actually have bioactive metabolites that provide therapeutic potential against a variety of diseases. Herein, we review the production of bioactive compounds from leaves, roots, seeds, flowers and stems. We further summarize the different methods for obtaining plant extracts and the green technologies for the synthesis of nanoparticles of plant derived bioactive compounds. Biotechnological aspects of these synthesized nanoparticles are also added here as highlights of this review. Overall, plant derived nanoparticles provide an alternative to conventional approaches for drug delivery as well and present exciting opportunities for future research on novel areas.

3.
Curr Probl Cardiol ; 49(5): 102524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492622

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Proteínas Quinases Ativadas por AMP/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
4.
Cell Biochem Funct ; 42(3): e3988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532684

RESUMO

This article deals with the antibacterial and anticancer potential of secondary metabolites produced by actinomycetes also reported as actinobacteria, Microbacterium proteolyticum (MN560041), and Streptomycetes rochei, where preliminary studies were done with the well diffusion method. These actinobacteria's silver nanoparticles were synthesized and characterized using transmission electron microscopy (TEM) and UV-Visible spectroscopy. Anticancer was measured using the MTT test, reactive oxygen species (ROS) generation measured with DCFDA, mitochondrial membrane potential (MMP) measurement, and DAPI fluorescence intensity activity was measured in treated and non-treated cancerous cells. The IC50 value for 5-FU (a), LA2(O) (b), LA2(R) (c), LA2(ON) (d), and LA2(RN) (e) was obtained at 3.91 µg/mL (52.73% cell viability), 56.12 µg/mL (52.35% cell viability), 44.90 µg/mL (52.3% cell viability), 3.45 µg/mL (50.25% cell viability), and 8.05 µg/mL (48.72% cell viability), respectively. TEM micrographs revealed discrete, well-separated AgNPs particles of size 7.88 ± 2 to 12.86 ± 0.24 nm. Gas chromatography-mass spectrometry was also performed to detect the compounds in bioactive metabolites where n-hexadecanoic acid was obtained as the most significant one. MTT test showed a substantial decline in A549 cell viability (up to 48.72%), 2.75-fold increase in ROS generation was noticed in comparison to untreated A549 lung cancer cells when measured with DCFDA. A total of 0.31-fold decrease in MMP and 1.74-fold increase in DAPI fluorescence intensity compared to untreated A549 lung cancer cells suggests that the synthesized nanoparticles promote apoptosis in cancerous cells. Our findings suggests that the secondary metabolites of M. proteolyticum and S. rochei in nanoparticle form can be used as a significant compound against lung cancers.


Assuntos
Actinobacteria , Fluoresceínas , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Prata/química , Espécies Reativas de Oxigênio/metabolismo , Actinobacteria/metabolismo , Nanopartículas Metálicas/química , Células A549 , Extratos Vegetais/química
5.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352483

RESUMO

Pseudouridylation is a prevalent post-transcriptional RNA modification that impacts many aspects of RNA biology and function. The conversion of uridine to pseudouridine (Ψ) is catalyzed by the family of pseudouridine synthases (PUSs). Development of robust methods to determine PUS-dependent regulation of Ψ location and stoichiometry in low abundant mRNA is essential for biological and functional understanding of pseudouridylation. Here, we present a framework, NanoPsiPy, for identifying Ψ sites and quantify their levels in poly-A RNA at single-nucleotide resolution using direct RNA long-read Nanopore sequencing, based on the observation that Ψ can cause characteristic U-to-C basecalling errors in Nanopore direct RNA sequencing data. Our method was able to detect low and high stoichiometric Ψ sites in human mRNA. We validated our method by transcriptome-wide quantitative profiling of PUS7-dependent Ψ sites in poly-A RNA from a MYCN -amplified neuroblastoma cell line. We identified 8,625 PUS7-dependent Ψ sites in 1,246 mRNAs that encode proteins involved primarily in ribosome biogenesis, translation, and mitochondrial energy metabolism. Our work provides the first example of using direct RNA long-read Nanopore sequencing for transcriptome-wide quantitative profiling of mRNA pseudouridylation regulated by a PUS. We envision that our method will facilitate functional interrogation of PUSs in biological and pathological processes.

6.
J Biomol Struct Dyn ; 42(6): 3145-3165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37227775

RESUMO

A new and highly efficient visible-light-promoted catalyst free (VLCF) strategy for neat and clean synthesis of spiro indolo-quinazolinone-pyrrolo[3,4-a]pyrrolizine hybrids (6a-d) has been introduced. We have performed visible-light triggered 1,3-Dipolar cycloaddition reaction of maleimide (5a-d) with azomethine ylide generated in situ derived from tryptanthrin (3) and L-proline (4) to obtain desired products (6a-d) in good to excellent yield. Authentication and characterization of product was done using various spectroscopic techniques such as IR, 1H NMR, 13C NMR, Mass spectrometry and single crystal XRD analysis. To explain the reaction spontaneity, product stability, reactivity as well as possible mode of the interaction a quantum chemical investigation was performed and depicted through DFT studies. The synthesized compound 6a was also evaluated for anti-proliferative activity against a panel of five cancer cell lines (MCF-7, MDA-MB-231, HeLa, PC-3 and Ishikawa) and normal human embryonic kidney (HEK-293) cell line by using MTT assay. Compound 6a showed very good in vitro anti-proliferative activity (IC50  = 6.58-17.98 µM) against four cancer cell lines and no cytotoxicity against normal HEK-293. In order to evaluate the anticancer potential of compounds 6a-d, molecular docking was performed against wild type and mutant EGFR. The results suggest that all the compounds occupied the active site of both enzymes, with a strong binding energy (-10.2 to -11.5 kcal/mol). These results have been confirmed by molecular dynamics simulation by evaluating root mean square deviation (RMSD) and root mean square fluctuation (RMSF), along with principal component analysis (PCA).Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/química , Quinazolinonas/farmacologia , Células HEK293 , Simulação de Dinâmica Molecular
7.
Biodegradation ; 35(2): 137-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37639167

RESUMO

PHB depolymerase enzymes are able to breakdown the PHB polymers and thereby get significant economic value in the bioplastics industry and for bioremediation as well. This study shows the purification of novel extracellular PHB depolymerase enzyme from Aeromonas caviae Kuk1-(34) using dialysis followed by gel filtration and HPLC. The purification fold and yield after HPLC were 45.92 and 27.04%, respectively. HPLC data showed a single peak with a retention time of 1.937 min. GC-MS analysis reveals the presence of three compounds, of which 1-Dodecanol was found to be most significant with 54.48% area and 8.623-min retention time (RT). The molecular weight of the purified enzyme was obtained as 35 kDa with Km and apparent Vmax values of 0.769 mg/mL and 1.89 U/mL, respectively. The enzyme was moderately active at an optimum temperature of 35 °C and at pH 8.0. The stability was detected at pH 7.0-9.0 and 35-45 °C. Complete activity loss was observed with EDTA, SDS, Tween-20 at 5 mM and with 0.1% Triton X 100. A biodegradation study of commercially available biodegradable polymer films was carried out in a liquid medium and in soil separately with pure microbial culture and with purified enzyme for 7, 14, 28, and 49 consecutive days. In a liquid medium, with a pure strain of Aeromonas caviae Kuk1-(34), the maximum degradation (89%) was achieved on the PHB film, while no changes were observed with other polymer films. With purified enzyme in the soil, 71% degradation of the PHB film was noticed, and it was only 18% in the liquid medium. All such weight analysis were confirmed by SEM images where several holes, pits, grooves, crest, and surface roughness are clearly observed. Our results demonstrated the potential utility of Aeromonas caviae Kuk1-(34) as a source of extracellular PHB depolymerase capable of degrading PHB under a wide range of natural/ lab conditions.


Assuntos
Aeromonas caviae , Polímeros , Poliésteres/metabolismo , Aeromonas caviae/metabolismo , Biodegradação Ambiental , Diálise Renal , Solo
8.
Sci Rep ; 13(1): 16420, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775650

RESUMO

Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.


Assuntos
Antiarrítmicos , Fibrilação Atrial , Humanos , Animais , Cobaias , Cães , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Ventricular/tratamento farmacológico , Cálcio , Fibrilação Atrial/tratamento farmacológico , Músculos Papilares , Modelos Animais
9.
J Mol Med (Berl) ; 101(11): 1379-1396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37707557

RESUMO

Reperfusion after acute myocardial infarction further exaggerates cardiac injury and adverse remodeling. Irrespective of cardiac cell types, loss of specifically the α isoform of the protein kinase GSK-3 is protective in chronic cardiac diseases. However, the role of GSK-3α in clinically relevant ischemia/reperfusion (I/R)-induced cardiac injury is unknown. Here, we challenged cardiomyocyte-specific conditional GSK-3α knockout (cKO) and littermate control mice with I/R injury and investigated the underlying molecular mechanism using an in vitro GSK-3α gain-of-function model in AC16 cardiomyocytes post-hypoxia/reoxygenation (H/R). Analysis revealed a significantly lower percentage of infarct area in the cKO vs. control hearts post-I/R. Consistent with in vivo findings, GSK-3α overexpression promoted AC16 cardiomyocyte death post-H/R which was accompanied by an induction of reactive oxygen species (ROS) generation. Consistently, GSK-3α gain-of-function caused mitochondrial dysfunction by significantly suppressing mitochondrial membrane potential. Transcriptomic analysis of GSK-3α overexpressing cardiomyocytes challenged with hypoxia or H/R revealed that NOD-like receptor (NLR), TNF, NF-κB, IL-17, and mitogen-activated protein kinase (MAPK) signaling pathways were among the most upregulated pathways. Glutathione and fatty acid metabolism were among the top downregulated pathways post-H/R. Together, these observations suggest that loss of cardiomyocyte-GSK-3α attenuates cardiac injury post-I/R potentially through limiting the myocardial inflammation, mitochondrial dysfunction, and metabolic derangement. Therefore, selective inhibition of GSK-3α may provide beneficial effects in I/R-induced cardiac injury and remodeling. KEY MESSAGES: GSK-3α promotes cardiac injury post-ischemia/reperfusion (I/R). GSK-3α regulates inflammatory and metabolic pathways post-hypoxia/reoxygenation (H/R). GSK-3α overexpression upregulates NOD-like receptor (NLR), TNF, NF-kB, IL-17, and MAPK signaling pathways in cardiomyocytes post-H/R. GSK-3α downregulates glutathione and fatty acid metabolic pathways in cardiomyocytes post-H/R.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Traumatismo por Reperfusão , Camundongos , Animais , Quinase 3 da Glicogênio Sintase , Interleucina-17/metabolismo , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , NF-kappa B/metabolismo , Doença da Artéria Coronariana/metabolismo , Hipóxia/metabolismo , Reperfusão , Inflamação/metabolismo , Glutationa/metabolismo , Proteínas NLR/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Apoptose
10.
J Maxillofac Oral Surg ; 22(Suppl 1): 133-144, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37034447

RESUMO

Removal of a part of or the entire orbit results in facial defect, causing psychological trauma to the patient, apart from anatomic loss. This case series presents 6 clinical cases of prosthetic rehabilitation of ocular defects related to post-COVID-19 ROCM by both analog and digital workflow. The basic objective of this case series was to achieve a well retained, user-friendly, maxillofacial ocular prosthesis with esthetic accuracy. Unique size and shape of the ocular defect in each case, variety of skin tones, age range of patients and compromised neuromuscular control made each of the six cases challenging. This clinical series apart from proposing a digital & analog algorithm for rehabilitating ocular defects also illustrates analog workflow for 4 cases and digital workflow for 2 cases for fabrication of ocular prosthesis.

11.
J Mol Med (Berl) ; 101(3): 311-326, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36808555

RESUMO

Ischemia-induced metabolic remodeling plays a critical role in the pathogenesis of adverse cardiac remodeling and heart failure however, the underlying molecular mechanism is largely unknown. Here, we assess the potential roles of nicotinamide riboside kinase-2 (NRK-2), a muscle-specific protein, in ischemia-induced metabolic switch and heart failure through employing transcriptomic and metabolomic approaches in ischemic NRK-2 knockout mice. The investigations revealed NRK-2 as a novel regulator of several metabolic processes in the ischemic heart. Cardiac metabolism and mitochondrial function and fibrosis were identified as top dysregulated cellular processes in the KO hearts post-MI. Several genes linked to mitochondrial function, metabolism, and cardiomyocyte structural proteins were severely downregulated in the ischemic NRK-2 KO hearts. Analysis revealed significantly upregulated ECM-related pathways which was accompanied by the upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt in the KO heart post-MI. Metabolomic studies identified profound upregulation of metabolites mevalonic acid, 3,4-dihydroxyphenylglycol, 2-penylbutyric acid, and uridine. However, other metabolites stearic acid, 8,11,14-eicosatrienoic acid, and 2-pyrrolidinone were significantly downregulated in the ischemic KO hearts. Taken together, these findings suggest that NRK-2 promotes metabolic adaptation in the ischemic heart. The aberrant metabolism in the ischemic NRK-2 KO heart is largely driven by dysregulated cGMP and Akt and mitochondrial pathways. KEY MESSAGES: Post-myocardial infarction metabolic switch critically regulates the pathogenesis of adverse cardiac remodeling and heart failure. Here, we report NRK-2 as a novel regulator of several cellular processes including metabolism and mitochondrial function post-MI. NRK-2 deficiency leads to downregulation of genes important for mitochondrial pathway, metabolism, and cardiomyocyte structural proteins in the ischemic heart. It was accompanied by upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt and dysregulation of numerous metabolites essential for cardiac bioenergetics. Taken together, these findings suggest that NRK-2 is critical for metabolic adaptation of the ischemic heart.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Knockout
12.
Clin Exp Med ; 23(2): 313-331, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362771

RESUMO

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes major challenges to the healthcare system. SARS-CoV-2 infection leads to millions of deaths worldwide and the mortality rate is found to be greatly associated with pre-existing clinical conditions. The existing dataset strongly suggests that cardiometabolic diseases including hypertension, coronary artery disease, diabetes and obesity serve as strong comorbidities in coronavirus disease (COVID-19). Studies have also shown the poor outcome of COVID-19 in patients associated with angiotensin-converting enzyme-2 polymorphism, cancer chemotherapy, chronic kidney disease, thyroid disorder, or coagulation dysfunction. A severe complication of COVID-19 is mostly seen in people with compromised medical history. SARS-CoV-2 appears to attack the respiratory system causing pneumonia, acute respiratory distress syndrome, which lead to induction of severe systemic inflammation, multi-organ dysfunction, and death mostly in the patients who are associated with pre-existing comorbidity factors. In this article, we highlighted the key comorbidities and a variety of clinical complications associated with COVID-19 for a better understanding of the etiopathogenesis of COVID-19.


Assuntos
COVID-19 , Hipertensão , Humanos , COVID-19/complicações , SARS-CoV-2 , Comorbidade , Obesidade/complicações , Obesidade/epidemiologia
13.
ACS Omega ; 7(38): 34583-34598, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188265

RESUMO

A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC50 of 5.45 and 9.47 µM, respectively. A molecular docking study with respect to COVID-19 main protease (Mpro) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (-8.3 and -8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors.

14.
Cancers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077650

RESUMO

Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.

15.
J Food Biochem ; 46(10): e14262, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35796388

RESUMO

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina , Laurus , Origanum , Antivirais/química , Antivirais/farmacologia , Apigenina , Cinamatos , Cinnamomum zeylanicum/metabolismo , Suplementos Nutricionais , Laurus/metabolismo , Ligantes , Petroselinum/metabolismo , SARS-CoV-2
16.
Exp Biol Med (Maywood) ; 247(17): 1570-1576, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723053

RESUMO

D-dimer is an established biomarker of thromboembolism and severity in COVID-19. We and others have recently reported the dysregulation of tissue factor pathway inhibitor (TFPI), FXIII, fibrinolytic pathway, inflammatory markers, and tissue injury markers, particularly in severe COVID-19. However, association of these markers with thromboembolism in COVID-19 remains elusive. The correlation analyses between these markers in patients with moderate (non-ICU) and severe COVID-19 (ICU) were performed to delineate the potential pathomechanisms and impact of thromboembolism. We observe a negative correlation of plasma TFPI (r2 = 0.148, P = 0.035), FXIII (r2 = 0.242, P = 0.006), and plasminogen (r2 = 0.27, P = 0.003) with D-dimer, a biomarker of thromboembolism, levels in these patients. Further analysis revealed a strong positive correlation between fibrinolytic markers tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) (r2 = 0.584, P < 0.0001). Interestingly, a significant positive correlation of PAI-1, but not tPA, was observed with platelets and endothelial cells dysfunction markers P-selectin (r2 = 0.184, P = 0.01) and soluble CD40 ligand (sCD40 L) (r2 = 0.163, P = 0.02). Moreover, calprotectin (S100A8/A9) and cystatin C (CST3), previously linked with thromboembolism, exhibited positive correlations with each other (r2 = 0.339, P = 0.0007) and with the level of D-dimer independently in COVID-19. Finally, the tissue injury marker myoglobin demonstrated a strong positive correlation with D-dimer (r2 = 0.408, P = 0.0001). Taken together, inverse correlations of TFPI and FXIII with D-dimer suggest the TF pathway activation and aberrant fibrin polymerization in COVID-19 patients. The elevated level of PAI-1 is potentially contributed by activated platelets and endothelial cells. S100A8/A9 may also play roles in impaired fibrinolysis and thromboembolism, in part, through regulating the CST3. These findings strengthen the understanding of thromboembolism and tissue injury and may help in better management of thromboembolic complications in COVID-19 patients.


Assuntos
COVID-19 , Tromboembolia , Biomarcadores , Ligante de CD40/metabolismo , Cistatina C/metabolismo , Células Endoteliais/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinólise/fisiologia , Humanos , Complexo Antígeno L1 Leucocitário , Lipoproteínas , Mioglobina/metabolismo , Selectina-P/metabolismo , Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tecidual/metabolismo
17.
Life Sci ; 304: 120703, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700841

RESUMO

AIMS: Biologically active molecules cytokines and growth factors (GFs) are critical regulators of tissue injury/repair and emerge as key players in COVID-19 pathophysiology. However, specific disease stage of GFs dysregulation and, whether these GFs have associations with thromboembolism and tissue injury/repair in COVID-19 remain vague. MAIN METHODS: GF profiling in hospitalized moderate (non-ICU) and critically ill (ICU) COVID-19 patients was performed through legendPlex assay. KEY FINDINGS: Investigation revealed profound elevation of VEGF, PDGFs, EGF, TGF-α, FGF-basic, and erythropoietin (EPO) in moderate cases and decline or trend of decline with disease advancement. We found strong positive correlations of plasma VEGF, PDGFs, and EPO with endothelial dysfunction markers P-selectin and sCD40L. Interestingly, the HGF and G-CSF were upregulated at the moderate stage and remained elevated at the severe stage of COVID-19. Moreover, strong negative correlations of PDGFs (r2 = 0.238, P = 0.006), EPO (r2 = 0.18, P = 0.01) and EGF (r2 = 0.172, P = 0.02) and positive correlation of angiopoietin-2 (r2 = 0.267, P = 0.003) with D-dimer, a marker of thromboembolism, was observed. Further, plasma PDGFs (r2 = 0.199, P = 0.01), EPO (r2 = 0.115, P = 0.02), and EGF (r2 = 0.108, P = 0.07) exhibited negative correlations with tissue injury marker, myoglobin. SIGNIFICANCE: Taken together, unlike cytokines, most of the assessed GFs were upregulated at the moderate stage of COVID-19. The induction of GFs likely occurs due to endothelial dysfunction and may counter the adverse effects of cytokine storms which is reflected by inverse correlations of PDGFs, EPO, and EGF with thromboembolism and tissue injury markers. The findings suggest that the assessed GFs play differential roles in the pathogenesis of COVID-19.


Assuntos
COVID-19 , Tromboembolia , Biomarcadores , Citocinas , Fator de Crescimento Epidérmico , Humanos , Fator de Crescimento Derivado de Plaquetas , Receptores da Eritropoetina , SARS-CoV-2 , Fator A de Crescimento do Endotélio Vascular
18.
ACS Omega ; 7(16): 13870-13877, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559154

RESUMO

Clopamide (CPD, 1) is a piperidine and sulfamoylbenzamide-based diuretic drug and a potential photosensitizing sulfonamide; its phototransformation was investigated using N,N-dimethylaniline (DMA) as an electron donor and 1,4-dicyanonaphthalene (DCN) as an electron acceptor in an immersion-well-type photochemical reactor fitted with a medium-pressure mercury vapor lamp (450 W). Photodegradation of the drug Clopamide resulted in two significant products via photoinduced electron transfer. Structures of these products were deduced from their 1H NMR, 13C NMR, mass, and IR spectra. The photoproducts are 2- choloro-5-((2,6-dimethylpiperidin-1-yl)carbamoyl)benzenesulfonic acid (2) and 4-hydroxy-N-(2,6-dimethyl-1-piperidyl)-3-sulfamoyl benzamide (3). In addition to this, the comparative antioxidant potentials of the parent drug and its photoproducts were investigated using in silico molecular docking against tyrosinase in order to better understand the in vivo relevance of pharmacological action of the drug as a result of light-drug interactions. UV light has been observed to modify substituents on the benzene ring, hence loss of biological activity at the time of storage and in vivo cannot be ruled out. This suggests that Clopamide users should avoid light (natural or artificial) exposure to prevent from drug-induced photosensitivity.

19.
Exp Biol Med (Maywood) ; 247(14): 1205-1213, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466734

RESUMO

Severe coronavirus (SARS-COV-2) infection often leads to systemic inflammation accompanied by cardiovascular complications including venous thromboembolism (VTE). However, it is largely undefined if inflammatory markers such as lipocalin-2 (LNC2), calprotectin (S100A8/A9), and cystatin C (CST3), previously linked with VTE, play roles in cardiovascular complications and advancement of COVID-19 severity. To investigate the same, hospitalized moderate and severe (presented pneumonia and required intensive care) COVID-19 patients were recruited. The levels of plasma LNC2, S100A8/A9, CST3, myoglobin, and cardiac Troponin I (cTnI) were assessed through enzyme-linked immunosorbent assay (ELISA). The investigation revealed a significantly upregulated level of plasma LNC2 at the moderate stage of SARS-CoV-2 infection. In contrast, the levels of S100A8/A9 and CST3 in moderate patients were comparable to healthy controls; however, a profound induction was observed only in severe COVID-19 patients. The tissue injury marker myoglobin was unchanged in moderate patients; however, a significantly elevated level was observed in the critically ill COVID-19 patients. In contrast, cTnI level was unchanged both in moderate and severe patients. Analysis revealed a positive correlation between the levels of S100A8/A9 and CST3 with myoglobin in COVID-19. In silico analysis predicted interactions of S100A8/A9 with toll-like receptor 4 (TLR-4), MyD88 LY96, and LCN2 with several other inflammatory mediators including MMP2, MMP9, TIMP1, and interleukins (IL-6, IL-17A, and IL-10). In summary, early induction of LCN2 likely plays a role in advancing the COVID-19 severity. A positive correlation of S100A8/A9 and CST3 with myoglobin suggests that these proteins may serve as predictive biomarkers for thromboembolism and tissue injury in COVID-19.


Assuntos
COVID-19 , Tromboembolia Venosa , Biomarcadores , COVID-19/complicações , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Cistatina C/metabolismo , Humanos , Lipocalina-2 , Mioglobina/metabolismo , SARS-CoV-2
20.
PLoS One ; 17(4): e0264207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421107

RESUMO

Bioplastics, synthesized by several microbes, accumulates inside cells under stress conditions as a storage material. Several microbial enzymes play a crucial role in their degradation. This research was carried to test the biodegradability of poly-ß-hydroxybutyrate (PHB) utilizing PHB depolymerase, produced by bacteria isolated from sewage waste soil samples. Potent PHB degrader was screened based on the highest zone of hydrolysis followed by PHB depolymerase activity. Soil burial method was employed to check their degradation ability at different incubation periods of 15, 30, and 45 days at 37±2°C, pH 7.0 at 60% moisture with 1% microbial inoculum of Aeromonas caviae Kuk1-(34) (MN414252). Without optimized conditions, 85.76% of the total weight of the PHB film was degraded after 45 days. This degradation was confirmed with Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscope (SEM) analysis. The presence of bacterial colonies on the surface of the degraded film, along with crest, holes, surface erosion, and roughness, were visible. Media optimization was carried out in statistical mode using Plackett Burman (PB) and Central Composite Design (CCD) of Response Surface Methodology (RSM) by considering ten different factors. Analysis of Variance (ANOVA), Pareto chart, response surface plots, and F-value of 3.82 implies that the above statistical model was significant. The best production of PHB depolymerase enzyme (14.98 U/mL) was observed when strain Kuk1-(34) was grown in a media containing 0.1% PHB, K2HPO4 (1.6 gm/L) at 27 ℃ for seven days. Exploiting these statistically optimized conditions, the culture was found to be a suitable candidate for the management of solid waste, where 94.4% of the total weight of the PHB film was degraded after 45 days of incubation.


Assuntos
Aeromonas caviae , Gerenciamento de Resíduos , Aeromonas caviae/metabolismo , Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Meios de Cultura , Hidroxibutiratos/metabolismo , Poliésteres/química , Polímeros , Solo , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA